Secure Programming
with Static Analysis

Brian Chess

brian @fortify.com

T
Sy

<

¢]¥

N

<« JIJEw ¥ O

~ &£ 2 .
Xy HE D HECN®E HEs NENDN XER

- " e LMW

e B e M o - -, <« JJ=x W -

B ZEXNEN BPE OXEBKY REQD BE HEIN LAE WUKY = WL mISAE AN

hE D= B3C N4 &N

. < JJE YOOz 0 -, - L urEmwm x L s

!
Y
S
=8
1

b L W x AW eE > - 2w - L Lol LR

HENMN BPE OxEREY REL) B NEIN LIFE WVUKY KE

M~ L Fal+l e oD s & —t- = -

WURY BB DS BHCNE SWs NEASN XER

"0 s - @ - O N\ = A EWNn o

Unforeseen
Conseguences

BCE RAENRN BPY OxERKY REQD BN L3E WUK
e BHGN W HEs NENDN X8
E 8 el B o R x L wma Wz e 88 oF W

o8 - e s)= L W

I AR

P - e X W E € b= O oo M o b= —_

PP OXURNKY REO) HE NEMN £ X (v HE DEs N
WURY HE DE- BEC)NE W e

B A a 4

HE HEHIN LFE VURY HE DEle

L E MW xE 1l W e >0 9

w ~ 1 Bl B8 AW ¢

U LNE WUKY BE D BHECNE mmes TR

NENSE KER
e see i ol B 1 A\ e A EwWn o O - = W

"0 s il Kk 1. P e A EW o0 o

4

tous

) EBE HEUN LFE wURUYU G DS HICHNSE SEw T

iqui

s A FO o0 - ™

Connected
Dependable
' “B

O
| -
(S
)
(©
c
NS
%))
&
O
=)
%2
>
N
o
| -
©
=
&
Q
N

e Ub

FELYE

2 I N T-NE I, Ll ek 1. N\ - o0 -1 B RS AB e

|
. .A?.OLLU - - LW X X W e >0 D

BECE AENNM BPY O rENKY REON HE XEIN LHE UKV HE DX B

" b s LW F L WX »>0 9 F L€ X A -0 2

Software Security Today

® The line between secure/insecure is often subtle

©Many seemingly non-security decisions affect
security

®* Small problems can hurt a lot

® Smart people make dumb mistakes

© As a group, programmers tend to make the same
security mistakes over and over

®* We need non-experts to get security right

[FORTIFY'
e

TO ENGINEER
IS HUMAN

The Role of Failure in Successful Design

Success is foreseeing failure.

— Henry Petroski

HENRY PETROSKI

uuuuu of THE EVOLUTION OF USEFUL THINGS

FORTIFY’

Non-functional Security Failures

Generic Mistakes
> Input validation
> Memory safety (buffer overflow)
> Handling errors and exceptions
> Maintaining privacy

Common Software Varieties
> Web applications
> Network services / SOA
> Privileged programs

[FORTIFY
e

Buffer Overflow

MSDN sample code for function DirSpec:
int main(int argc, char *argv|[]) {
char DirSpec[MAX PATH + 1];

printf ("Target dir is %s.\n", argv[1l]);

strncpy (DirSpec, argv[l], strlen(argv[1l])+1);

[FORTIFY’

Cross-Site Scripting

)
S A %
LA RERT
Ny _\\é&).'..f.
A A
B
SRS

<c:1f
Foundations of

test="S${param.sayHello}">

Ajax

Hello ${param.name}!
</c:1f>

Ryan Asleson and Nathaniel T. Schutta

Apress*

“"We never intended the code that's in
there to actually be production-
ready code”

- Ryan Asleson

FORTIFY
e

Wrong Answers

Try Harder Fix It Later Test Your Way Out
 Our people are smart » Code as usual. » Do a penetration test
and work hard. Build a better firewall on the final version.

» Just tell them to stop (app firewall, intrusion « Scramble to patch
making mistakes. detection, etc.) findings.
* Not everyone is going » More walls don't help * Pen testing is good for
to be a security expert. when the software is demonstrating the
* Getting security right meant to communicate. problem.
requires feedback. * Security team can't * Doesn’t work for the
keep up. same reason you can'’t
test quality in.
FE!RT,IFY

AAAAAAAAA

Security in the Development Lifecycle

VAV
S SECURITY EXTERNAL CODE REVIEW PEMETRATION
S EC U R I I ‘ RECUIREMENTS REVIEW (moaLs) TESTIMNG

ABUSE Risk RISK-BASED Risk SECURITY
CALES AMALYSS SECURITY TESTS AMALYEIS QOPERATIOMS
RECHUIREMENTS ARZHITECTURE TEST PLANS CODE TESTS AND FEEDBACK FROM,
AMD USE CASES AMD DEHIGHN TEST RESULTS THE FiELD

GARY McGRAW

Foreword by Dan Geer

THE SECURITY
DEVELOPMENT

— LIFECYCLE

Security in the Development Lifecycle

Plan

Build

e Firewalls
e Intrusion Detection
e Penetration Testing

Security in the Development Lifecycle

Test Field

e Risk Assessment
e Code Review
e Security Testing

Effective security from non-experts
FORTIFY’
e

® Introduction

® Static Analysis: The Big Picture
® Inside a Static Analysis Tool

® Static Analysis in Practice

® What Next?

® Parting Thoughts

[FORTIFY’

Static Analysis: The Big Picture

[FORTIFY'

Static Analysis Defined

®* Analyze code without executing it

®* Able to contemplate many more possibilities than
you could execute with conventional testing

®* Doesn’t know what your code is supposed to do
® Must be told what to look for

FORTIFY
e

FORTIFY’
]

The Many Faces of Static Analysis

®* Type checking

® Style checking

® Program understanding

®* Program verification / Property checking
® Bug finding

® Security review

[FORTIFY’

Why Static Analysis is Good for Security

®* Fast compared to manual code review

®* Fast compared to testing

®* Complete, consistent coverage

® Brings security knowledge with it

®* Makes review process easier for non-experts

[FORTIFY
e

Prehistoric static analysis tools

R FORTIFY

SOFTWARE

Prehistoric static analysis tools

Glorified grep
(+) Good
“ Help security experts audit code
© A place to collect info about bad coding practices

(-) Bad
> NOT BUG FINDERS
° Not helpful without security expertise

Advanced Static Analysis Tools: Prioritization

int main(int argc, char* argvl[]) {
char bufl[1024];
char buf2[1024];
char* shortString = "a short string";
strcpy (bufl, shortString); /* eh. */
strcpy (buf2, argv[0]); J* 11 %/

[FORTIFY'
e

What You Won't Find

Architecture errors

© Microscope vs. telescope

Bugs you're not looking for

“ Bug categories must be predefined
System administration mistakes
User mistakes

[FORTIFY’

Security vs. Quality

® Bug finding tools focus on high confidence results
“ Bugs are cheap (plentiful)
“ Bug patterns, bug idioms
© False alarms are Kkillers
® Security tools focus on high risk results
“ More human input required
© The bugs you miss are the killers

[FORTIFY
e

Inside a Static Analysis Tool

[FORTIFY'

Under the Hood

PR
-.S00rée .Q Q - B-CHobeH
bt g) || e— —_— — O
”x:d?xe“ Q Q - B EeEHeEe
Build Perform Present
Model Analysis Results
Security
Knowledge
FORTIFY

Critical Attributes

® Analysis algorithms
» Uses the right techniques to find and prioritize issues
® Language support
© Understands the relevant languages/dialects
®* Capacity
©Ability to gulp down millions of lines of code
® Rule set
© Modeling rules, security properties

® Results management
2> Allow human to review results
2 Prioritization of issues

© Control over what to report _
FORTIFY

Building a Model

®* Front end looks a lot like a compiler

® Language support

“ One language/compiler is straightforward
“ Lots of combinations is harder

® (Could analyze compiled code...
© Everybody has the binary
* No need to guess how the compiler works
© No need for rules

® _..but
© Decompilation can be difficult
“ Loss of context hurts. A lot.

© Remediation requires mapping to source anyway
e

Analysis Techniques

® Taint propagation
® Trace potentially tainted data through the
program

® Report locations where an attacker could take
advantage of a vulnerable function or construct

bﬁ%f== getInputfFroNetwork() ;

copyBuffer (newBuff, buff);
exec (% ; (command injection)

® Many other approaches, no one right answer

[FORTIFY

Only Two Ways to Go Wrong

® False positives

» Incomplete/inaccurate model
_ _ The tool that
“ Conservative analysis

®* False negatives
© Incomplete/inaccurate model
© Missing rules
“ “Forgiving” analysis

® Specify
© Security properties
~ Behavior of library code

buff = getlInputFromNetwork() ;
copyBuffer (newBuff, buff);
exec (newBuff) ;

® Three rules to detect the vulnerability
1) getInputFromNetwork () postcondition:
return value 1s tainted
2) copyBuffer (argl, arg2) postcondition:
argl array values set to arg2 array values
3) exec(arg) precondition:

arg must not be tainted
FORTIFY

B SOFTWARE

Displaying Results

® Must convince programmer that there’s a bug in the code

® Different interfaces for different scenarios:
~ Security auditor parachutes in to 2M line program

~ Programmer reviews own code

2 Programmers share code review responsibilities

® Interface is just as important as analysis

® Don’t show same bad result twice

Bad interface

Your Code
Sucks.

[FORTIFY

Static Analysis in Practice

!!!!!!!!

Two Ways to Use the Tools

®* Analyze completed programs
“ Fancy penetration test. Bleah.
© Results can be overwhelming |
> Most people have to start here | 4.
© Good motivator

®* Analyze as you write code
© Run as part of build
* Nightly/weekly/milestone
“ Fix as you go

FORTIFY’

Typical Objections and Their True Meanings

Objection Translation

"It takes too long to run.” "I think security is optional, so I
don’t want to do it.”

“It has too many false positives.” | "I think security is optional, so I
don’t want to do it.”

“It doesn't fit with the way 1 "I think security is optional, so I
work.” don’t want to do it.”
FORTIFY

® ?? Defect Density = Vulnerability Density ??
®* NOT A GOOD RISK BAROMETER

®* Good for answering questions such as
© Which bugs do we write most often?
* How much remediation effort is required?

100% -

Log Fergag 112)

Percent lssues Reviewed

Privacy Vioatio~ (3}

Passwvosd Massgerran! (1)

Adopting a Static Analysis Tool

1) Some culture change required
“ More than just another tool
© Often carries the banner for software security
» Pitfall: the tool doesn’t solve the problem by itself

2) Go for the throat

Tools detect lots of stuff. Turn most of it off.
“ Focus on easy-to-understand, highly relevant problems.

3) Do training up front
© Software security training is paramount

» Tool training is helpful too
FORTIFY
e

Adopting a Static Analysis Tool

4) Measure the outcome

© Keep track of tool findings
Keep track of outcome (issues fixed)

<

5) Make it your own
2 Invest in customization

Map tool against internal security standards.
© The tools reinforce coding guidelines

2 Coding guidelines are written with automated checking in mind

<

6) The first time around is the worst
© Budget 2x typical cycle cost

Typical numbers: 10% of time for security, 20% for the
first time FORTIFY’

<

What Next?

!!!!!!!!

Seven Pernicious Kingdoms

® (atalog, define, and categorize common mistakes
* http://www.fortify.com/vulncat

Input validation and ® Error handling

representation ® Code quality
® API abuse ® Encapsulation
® Security features

o * Environment

Time and state
[FORTIFY
[

Finding Bugs, Making Friends

Sponsor open source project FindBugs
“ Quality-oriented bug finding for Java

Academic program

* Free Fortify Source Code Analysis licenses
for .edu

Java Open Review
* http://opensource.fortifysoftware.com
Support electronic voting machine review

2 (California
> Florida
> more to come!

[FORTIFY'
e

Security Testing

®* Most widely used security testing techniques are
about controllability

* Fuzzing (random input)
» Shooting dirty data (input that often causes trouble)
* A different take: improve observability

2 Instrument code to observe runtime behavior:
Fortify Tracer

®* Benefits
© Security-oriented code coverage
©Vastly improved error reporting
© Finds more bugs

® Uses rule set from static analysis tool! FORTIFY'
S

Detecting Attacks at Runtime

® If you can find bugs, can you fix them?

® Instrument program, watch it run:
Fortify Defender

®* More context than external systems

®* Flexible response: log, block, etc

®* Low performance overhead is a must

® Potential to detect misuse in addition to bugs

[FORTIFY'
e

Parting Thoughts

!!!!!!!!

N —

—

N
Il Algorithms

N
NS

Data
Structures

Libraries Language

AN
\
>
o~ =
> ~
Y
| |
Ay
-
/i
- N 7
~ ,__:’ -
L %
S A5 '
1. !
4
’ "
| J
] ¥
'L I
o /i
1 o
A e

The Buck Stops With Your Code

® Security problems everywhere you look
“ Languages, libraries, frameworks, etc.

* Right answer

© Better languages, libraries, frameworks, etc.

®* Realistic answer

“ Build secure programs out of insecure pieces

% Il Algorithms

S Protocols

®* Mistakes happen. Plan for them.

® Security is now part of programming

®* For code auditors: tools make code review efficient
®* For programmers: tools bring security expertise

Critical components of a good tool:
» Algorithm

“ Rules

© Interface

<

Adoption Plan

[FORTIFY
e

Foreword by Gary McGraw

ORIIFY SECURE

o PROGRAMMING
= WITH —
STATIC ANALYSIS
Brian Chess
2
brian @fortify.com " " 4
\\

Bnan Chess I Jacob West

