
Secure Programming
with Static Analysis

Brian Chess 

brian@fortify.com

Software Systems that are
•  Ubiquitous
•  Connected
•  Dependable

Complexity

Unforeseen
Consequences

Software Security Today

   The line between secure/insecure is often subtle

   Many seemingly non-security decisions affect

security

   Small problems can hurt a lot

   Smart people make dumb mistakes

   As a group, programmers tend to make the same
security mistakes over and over

   We need non-experts to get security right

Success is foreseeing failure.
 – Henry Petroski

Non-functional Security Failures

Generic Mistakes

   Input validation

   Memory safety (buffer overflow)

   Handling errors and exceptions

   Maintaining privacy

Common Software Varieties

   Web applications

   Network services / SOA

   Privileged programs

Buffer Overflow

 MSDN sample code for function DirSpec:

int main(int argc, char *argv[]) {

 ...

 char DirSpec[MAX_PATH + 1];

 printf ("Target dir is %s.\n", argv[1]);

 strncpy (DirSpec, argv[1], strlen(argv[1])+1);

Cross-Site Scripting

<c:if

 test="${param.sayHello}">

 Hello ${param.name}!

</c:if>

“We never intended the code that's in
there to actually be production-
ready code”

 - Ryan Asleson

Wrong Answers

Try Harder Test Your Way Out
•  Do a penetration test
on the final version.
•  Scramble to patch
findings.

• Pen testing is good for
demonstrating the
problem.
• Doesn’t work for the
same reason you can’t
test quality in.

Fix It Later
•  Code as usual.
•  Build a better firewall
(app firewall, intrusion
detection, etc.)

• More walls don’t help
when the software is
meant to communicate.
• Security team can’t
keep up.

• Our people are smart
and work hard.
• Just tell them to stop
making mistakes.

• Not everyone is going
to be a security expert.
• Getting security right
requires feedback.

Security in the Development Lifecycle

Plan Build Field Test

• Firewalls
• Intrusion Detection
• Penetration Testing

Security in the Development Lifecycle

Plan Build Field Test

• Risk Assessment
• Code Review
• Security Testing

Effective security from non-experts

Security in the Development Lifecycle

Overview

   Introduction

   Static Analysis: The Big Picture

   Inside a Static Analysis Tool

   Static Analysis in Practice

   What Next?

   Parting Thoughts

Static Analysis: The Big Picture

Static Analysis Defined

   Analyze code without executing it

   Able to contemplate many more possibilities than

you could execute with conventional testing

   Doesn’t know what your code is supposed to do

   Must be told what to look for

chainsaw

The Many Faces of Static Analysis

   Type checking

   Style checking

   Program understanding

   Program verification / Property checking

   Bug finding

   Security review

Why Static Analysis is Good for Security

   Fast compared to manual code review

   Fast compared to testing

   Complete, consistent coverage

   Brings security knowledge with it

   Makes review process easier for non-experts

Prehistoric static analysis tools

Flawfinder

ITS4

RATS

Prehistoric static analysis tools

Glorified grep
(+) Good

   Help security experts audit code

   A place to collect info about bad coding practices

(-) Bad

   NOT BUG FINDERS

   Not helpful without security expertise

Flawfinder

ITS4

RATS

Advanced Static Analysis Tools: Prioritization

int main(int argc, char* argv[]) {

 char buf1[1024];

 char buf2[1024];

 char* shortString = "a short string";

 strcpy(buf1, shortString); /* eh. */
 strcpy(buf2, argv[0]); /* !!! */

 ...

What You Won’t Find

   Architecture errors

   Microscope vs. telescope

   Bugs you’re not looking for

   Bug categories must be predefined

   System administration mistakes

   User mistakes

Security vs. Quality

   Bug finding tools focus on high confidence results

   Bugs are cheap (plentiful)

   Bug patterns, bug idioms

   False alarms are killers

   Security tools focus on high risk results

   More human input required

   The bugs you miss are the killers

Inside a Static Analysis Tool

Under the Hood

Critical Attributes

   Analysis algorithms

   Uses the right techniques to find and prioritize issues

   Language support

   Understands the relevant languages/dialects

   Capacity

   Ability to gulp down millions of lines of code

   Rule set

   Modeling rules, security properties

   Results management

   Allow human to review results

   Prioritization of issues

   Control over what to report

Building a Model

   Front end looks a lot like a compiler

   Language support

   One language/compiler is straightforward

   Lots of combinations is harder

   Could analyze compiled code…

   Everybody has the binary

   No need to guess how the compiler works

   No need for rules

   …but

   Decompilation can be difficult

   Loss of context hurts. A lot.

   Remediation requires mapping to source anyway

   Taint propagation

   Trace potentially tainted data through the

program

   Report locations where an attacker could take

advantage of a vulnerable function or construct

   Many other approaches, no one right answer

Analysis Techniques

 = getInputFroNetwork();

copyBuffer(,);

exec();

buff

buff newBuff

newBuff

(command injection)

Only Two Ways to Go Wrong

   False positives

   Incomplete/inaccurate model

   Conservative analysis

   False negatives

   Incomplete/inaccurate model

   Missing rules

   “Forgiving” analysis

The tool that
cried “wolf!”

 Missing a
detail can kill.

Developer Auditor

   Specify

   Security properties

   Behavior of library code

   Three rules to detect the vulnerability
1) getInputFromNetwork() postcondition:
 return value is tainted

2) copyBuffer(arg1, arg2) postcondition:
 arg1 array values set to arg2 array values

3) exec(arg) precondition:

 arg must not be tainted

Rules

buff = getInputFromNetwork();
copyBuffer(newBuff, buff);
exec(newBuff);

   Must convince programmer that there’s a bug in the code

   Different interfaces for different scenarios:

   Security auditor parachutes in to 2M line program

   Programmer reviews own code

   Programmers share code review responsibilities

   Interface is just as important as analysis

   Don’t show same bad result twice

OK

Your Code
Sucks.

Displaying Results

Bad interface

Static Analysis in Practice

Two Ways to Use the Tools

   Analyze completed programs

   Fancy penetration test. Bleah.

   Results can be overwhelming

   Most people have to start here

   Good motivator

   Analyze as you write code

   Run as part of build

   Nightly/weekly/milestone

   Fix as you go

Typical Objections and Their True Meanings

Objection Translation
“It takes too long to run.” “I think security is optional, so I

don’t want to do it.”

“It has too many false positives.” “I think security is optional, so I
don’t want to do it.”

“It doesn’t fit with the way I
work.”

“I think security is optional, so I
don’t want to do it.”

Metrics

   ?? Defect Density  Vulnerability Density ??

   NOT A GOOD RISK BAROMETER

   Good for answering questions such as

   Which bugs do we write most often?

   How much remediation effort is required?

1) Some culture change required

   More than just another tool

   Often carries the banner for software security

   Pitfall: the tool doesn’t solve the problem by itself

3) Do training up front

   Software security training is paramount

   Tool training is helpful too

Adopting a Static Analysis Tool

2) Go for the throat

   Tools detect lots of stuff. Turn most of it off.

   Focus on easy-to-understand, highly relevant problems.

4) Measure the outcome

   Keep track of tool findings

   Keep track of outcome (issues fixed)

5) Make it your own

   Invest in customization

   Map tool against internal security standards.

   The tools reinforce coding guidelines

   Coding guidelines are written with automated checking in mind

6) The first time around is the worst

   Budget 2x typical cycle cost

   Typical numbers: 10% of time for security, 20% for the

first time

Adopting a Static Analysis Tool

What Next?

Seven Pernicious Kingdoms

   Catalog, define, and categorize common mistakes

   http://www.fortify.com/vulncat

   Input validation and
representation

   API abuse

   Security features

   Time and state

   Error handling

   Code quality

   Encapsulation

* Environment

Finding Bugs, Making Friends

   Sponsor open source project FindBugs

   Quality-oriented bug finding for Java

   Academic program

   Free Fortify Source Code Analysis licenses

for .edu

   Java Open Review

   http://opensource.fortifysoftware.com

   Support electronic voting machine review

   California

   Florida

   more to come!

Security Testing

   Most widely used security testing techniques are
about controllability

   Fuzzing (random input)

   Shooting dirty data (input that often causes trouble)

   A different take: improve observability

   Instrument code to observe runtime behavior:
 Fortify Tracer

   Benefits

   Security-oriented code coverage

   Vastly improved error reporting

   Finds more bugs

   Uses rule set from static analysis tool!

Detecting Attacks at Runtime

   If you can find bugs, can you fix them?

   Instrument program, watch it run:
 Fortify Defender

   More context than external systems

   Flexible response: log, block, etc

   Low performance overhead is a must

   Potential to detect misuse in addition to bugs

Parting Thoughts

<Your Code>

Language
Platform Libraries

Design

Protocols

Algorithms

Data
Structures

Conventions

<Your Code>

Language
Platform Libraries

Design

Protocols

Algorithms

Data
Structures

Conventions

The Buck Stops With Your Code

   Security problems everywhere you look

   Languages, libraries, frameworks, etc.

   Right answer

   Better languages, libraries, frameworks, etc.

   Realistic answer

   Build secure programs out of insecure pieces

<Your Code>

Language
Platform Libraries

Design

Protocols

Algorithms

Data
Structures

Conventions

Summary

   Mistakes happen. Plan for them.

   Security is now part of programming

   For code auditors: tools make code review efficient

   For programmers: tools bring security expertise

   Critical components of a good tool:

   Algorithm

   Rules

   Interface

   Adoption Plan

Brian Chess

 

brian@fortify.com

