
1

The ultimate goal

of all computer science

is the program.

Designers, programmers and engineers must

once again come to know and comprehend the

composite character of a program, both as an

entity and in terms of its various parts.

James Noble

Victoria University of Wellington

New Zealand

The

Lego

Hypothesis

3

The Dream

In the beginning,

so our myths and stories tell us,

the programmer created the program

from the eternal nothingness of the void.

4

The Dream

In the future

Programs will be built out of reusable parts

Software parts will be available worldwide

Software engineering will be set free

from the mundane necessity

 of programming

5

The Lego Hypothesis

Programs can be built out of many small

independent components

In the same way that a model house

can be built up out of many small

independent Lego blocks

6

The Lego Hypothesis

• Components are atoms
– Components are small

– Components are indivisible

– Components are substitutable

– Components are more similar than different

– Components are coupled
to only a few, neighboring components

– Components are abstract encapsulations

• All components are equal

• A system can be explained reductively from
its components and their composition

2

7

1968

8

1968

The general admission of the existence

of the software

failure in this group of responsible

people is the most refreshing experience
I have had in a number of years

Dijkstra

9

1968

The market would consist of specialists in
system building, who would be able to use tried
parts for all the more commonplace parts of
their systems. … The ultimate consumer of
systems based on components ought to see
considerably improved reliability and
performance, … and also to avoid the now
prevalent failings of the more mundane parts of
systems, which have been specified by experts,
and have then been written by hacks.

--- M. Douglas McIlroy, {\it Mass Produced Software Components} 10

Robinson, Hovenden, Hall, Rachel

Fordism … has four basic principles:

• standardised products

• repeated tasks having potential for
automation

• unautomated tasks analysed using work
study methods, known as Taylorism.

• production lines with the work moving to
the workers.

--- Hugh Robinson, Fiona Hovenden, Pat Hall and Janet
Rachel,{\it Postmodern Software Development}

11

An Experiment

• Look at the structures of object graphs

Pictures by Andreas Zeller & Thomas Zimmermann

http://www.st.cs.uni-sb.de/memgraphs/
12

Python

20K edges

3

13
gcc

80K edges 14
JDK 1.5

Hayden Smith, VUW

15
Work by Alex Potanin et al http://www.comp.vuw.ac.nz http://www.elvis.ac.nz

16

 Power Law

• N
k
 ! R

k

s

• Highly Skewed
• Mode

• Median

• Mean

• Long Tail

• Scale Free

17

Pascal

18

Linux & Java

Also Wheeldon+Counsell

Valvarde+Solé

4

19 20

21 22

1968

There are of course many good systems,

but are any of these good enough to

have human life tied on-line to

them, in the sense that if they fail for

more than a few seconds, there is a fair

chance of one or more people being

killed?
Brian Randell

23

A whole world of programs!

• Fifty years of software

• Thirty years of “software engineering"

• Software is everywhere

• But not the kind of software we imagined!

24

The Problem of Prime Numbers

“The task

is to instruct a computer

to print a table

of the first thousand prime numbers,

2 being considered

the first prime number.”

E.W.Dijkstra, Notes on Structured Programming

5

25

The Problem of Prime Numbers

“The task

is to instruct a computer

to print a table

of the first thousand prime numbers,

2 being considered

the first prime number.”

E.W.Dijkstra, Notes on Structured Programming

26

The Problem of Prime Numbers

How do we do this

when we are not writing the

first program in the world?

27 28

29 30

6

? 32

Postmodernity

. . that condition in which, for the first

time, and as a result of
technologies which allow the large-

scale storage, access, and re-production of

records of the past, the past appears to

be included in the present.

Steven Conner,
Cambridge Companion to Postmodernism

33

Lyotard

\vspace*{5mm} Recourse to grand

narratives is

forbidden; …. But, as we have

seen, the “small narrative” is a

form which superbly allows imaginative

invention, and most of all in science.
34

Grand Narratives

• Algorithmic computation — correctness

• Algorithmic efficiency

ACM 2001 Computing Curriculum

• Software that fails to meet these goals is

evidence of the moral weakness of its

programmers

 Martin Rinard, OOPSLA Onward 2005

35

Little Narratives

! How then do you make decisions?

– Negotiation between various narratives

– Open to the environment

– Contingent, context dependent

– No single correct answer

! Negotiation

! Local correctness
36

Eco

The job … is a trial and error

process, very similar to what

happens in an Oriental bazaar
when you are buying a carpet. The

merchant asks 100, you offer 10 and

after an hour of bargaining you

agree on 50.
http://www.themodernword.com/eco/eco_guardian94.html

7

37

What does this mean for us?

Acceptability

Aspects

Scrap-Heap
Glue CodeAgile!

XP

Scripting
Wikis

Relations

Patterns

Open Source

Mashup

No Big Picture
38

Extreme Programming

• Customer and developers

negotiate over user stories

• Iterate and Refactor

• Build a system, not components

39

Scrap-Heap Programming

• Programmers work bottom up…

• From a Scrap-Heap

• Starting with whatever they can
– Find

– Scavenge

– Steal

– Google

• Then work out what they can build

• Then negotiate about requirements
40

Glue Programming

"What’s at the end

of the power-law?

"Lots of very small components

"Large components cannot be changed

"“Glue code” ties them together

41radio.echoditto.com

http://www.yes2wind.co.nz

MASHUP

42

Perl

When I started designing Perl I lovingly
reused features from many languages …
from C, sh, csh, grep, sed, awk, Fortran,
COBOL, PL/I, BASIC-PLUS, SNOBOL,
Lisp, Ada, C++, and Python.
To the extent that Perl rules rather than
sucks, it's because the various features of
these languages ruled rather than sucked.

Larry Wall

8

43

Design Patterns

• Solution to a problem in a context

• Small stories

about bits of designs

• Patterns don’t build

complete, whole programs

44

Aspect-Oriented Design

class Lot {

String designation;

Section locality;

MailDeliveryPostcode postcode;

int incoming_mail_volume;

RefuseCollection route;

double refuse_load;

double recycle;

…

45

Aspect-Oriented Design

aspect MailDelivery {

MailDeliveryPostcode Lot.postcode;

int Lot.incoming_mail_volume;

}

aspect RefuseCollection {

RefuseCollection Lot.route;

double Lot.refuse_load;

double Lot.recycle;

class Lot {
 String designation;
} 46

Good Enough Software

“Why do you call me good?”

Good enough for what?

For whom?

Software neither correct nor efficient

But “good enough” for context of use

XP - explicitly balances variables

Acceptability-Orientation

End-to-end arguments

47

KLF

\item[Number One:]

Every Number One song ever written is

only made up from bits from other songs.

There is no lost chord.

No changes untried.

No extra notes to the scale or hidden

beats to the bar.

There is no point in searching for

originality.

\\ ---Jimmy Caulty and Bill Drummond, \textit{The Manual} 48

KLF

So why don't all songs sound the same?

 Well, it's because although the chords,
notes, harmonies, beats and words have
all been used before
their own soul shines through;
their personality demands attention.

\\--- Jimmy Caulty and Bill Drummond, {\it The Manual}

9

49

The Lego Hypothesis

Revisited

• Programs are built out of components

– But not Lego components

– Concrete stuff, not abstractions

• Old, new, borrowed, blue…

• Components are not all equal

• Interactions

interdependencies

are highly complex

50

The Lego Hypothesis

In the beginning,

so our myths and stories tell us,

the programmer created the program

from the eternal nothingness of the void.

51

The Lego Hypothesis

Today, we have a wide world of software

Programs are built out of other programs

Software Engineering is programming

(in the widest sense)

and much more besides

53

Credits

Co-conspirator

Robert Biddle

Java Object Graphs Wrangler

Alex Potanin & Hayden Melton

Software Structure Wranglers

Jerome Doleman & Nick Chapman

Maths Wranglers

Matt Visser & Marcus Frean

Gareth Baxter

